Lysophosphatidic Acid Inhibits Insulin Signaling in Primary Rat Hepatocytes via the LPA3 Receptor Subtype and is Increased in Obesity.
نویسندگان
چکیده
BACKGROUND/AIMS Obesity is a main risk factor for the development of hepatic insulin resistance and it is accompanied by adipocyte hypertrophy and an elevated expression of different adipokines such as autotaxin (ATX). ATX converts lysophosphatidylcholine to lysophosphatidic acid (LPA) and acts as the main producer of extracellular LPA. This bioactive lipid regulates a broad range of physiological and pathological responses by activation of LPA receptors (LPA1-6). METHODS The activation of phosphatidylinositide 3-kinases (PI3K) signaling (Akt and GSK-3ß) was analyzed via western blotting in primary rat hepatocytes. Incorporation of glucose into glycogen was measured by using radio labeled glucose. Real-time PCR analysis and pharmacological modulation of LPA receptors were performed. Human plasma LPA levels of obese (BMI > 30, n = 18) and normal weight individuals (BMI 18.5-25, n = 14) were analyzed by liquid chromatography tandem-mass spectrometry (LC-MS/MS). RESULTS Pretreatment of primary hepatocytes with LPA resulted in an inhibition of insulin-mediated Gck expression, PI3K activation and glycogen synthesis. Pharmacological approaches revealed that the LPA3-receptor subtype is responsible for the inhibitory effect of LPA on insulin signaling. Moreover, human plasma LPA concentrations (16: 0 LPA) of obese participants (BMI > 30) are significantly elevated in comparison to normal weight individuals (BMI 18.5-25). CONCLUSION LPA is able to interrupt insulin signaling in primary rat hepatocytes via the LPA3 receptor subtype. Moreover, the bioactive lipid LPA (16: 0) is increased in obesity.
منابع مشابه
The Role of Fetuin-A in Diabetes and Obesity: The Mechanism and Action
Fetuin-A is a phosphorylated glycoprotein produced by liver.It by binding to calcium ion inhibits ectopic calcium deposition and protects vascular calcification. Fetuin-A acts as a multifactorial protein and its role has been documented from brain development to bone remodeling and immune function, regulation of insulin activity, hepatocyte growth factor activity and inhibition lymphocyte blast...
متن کاملProtective Role for LPA3 in Cardiac Hypertrophy Induced by Myocardial Infarction but Not by Isoproterenol
Background: We previously reported that lysophosphatidic acid (LPA) promoted cardiomyocyte hypertrophy in vitro via one of its G protein-coupled receptor subtypes, LPA3. In this study, we examined the role of LPA3 in cardiac hypertrophy induced by isoproterenol (ISO) and myocardial infarction. Methods:In vitro, neonatal rat cardiomyocytes (NRCMs) were subjected to LPA3 knocked-down, or pretreat...
متن کاملKi16425, a subtype-selective antagonist for EDG-family lysophosphatidic acid receptors.
Lysophosphatidic acid (LPA) exerts a variety of biological responses through specific receptors: three subtypes of the EDG-family receptors, LPA1, LPA2, and LPA3 (formerly known as EDG-2, EDG-4, and EDG-7, respectively), and LPA4/GPR23, structurally distinct from the EDG-family receptors, have so far been identified. In the present study, we characterized the action mechanisms of 3-(4-[4-([1-(2...
متن کاملPharmacological activation of lysophosphatidic acid receptors regulates erythropoiesis
Lysophosphatidic acid (LPA), a growth factor-like phospholipid, regulates numerous physiological functions, including cell proliferation and differentiation. In a previous study, we have demonstrated that LPA activates erythropoiesis by activating the LPA 3 receptor subtype (LPA3) under erythropoietin (EPO) induction. In the present study, we applied a pharmacological approach to further elucid...
متن کاملTargeting lysophosphatidic acid receptor type 1 with Debio 0719 inhibits spontaneous metastasis dissemination of breast cancer cells independently of cell proliferation and angiogenesis
Metastasis is the main cause of death for cancer patients. Targeting factors that control metastasis formation is a major challenge for clinicians. Lysophosphatidic acid (LPA) is a bioactive phospholipid involved in cancer. LPA activates at least six independent G protein-coupled receptors (LPA1-6). Tumor cells frequently co-express multiple LPA receptors, puzzling the contribution of each one ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 43 2 شماره
صفحات -
تاریخ انتشار 2017